Pacific Association for Computational Linguistics

Collections, Collection Exemplars, and the Exemplification
Algorithm

Yingwei Wang and Nick Cercone

Department of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
Email:{ncercone, y25wang) Guwaterloo.ca

1 Collections and Collection
Exemplars

We are in the age of an information explosion. Peo-
ple often encounter so many documents that they
do not have enough time to read all of them, or
even just to scan all of the documents and their
titles. Web pages and web sites (represented by
their first pages) can be considered as documents.
The size and continual growth of the Internet ren-
ders this search problem more and more difficult
over time.

We attack this problem from a special perspec-
tive: getting the general idea of a large document
set through some typical documents in the set.
First we define collection and collection exemplar:

Definition 1 (Collection) A document collec-
tion (we call it a collection hereafter) is a set of
documents which may or may not have an organi-
zational structure superimposed.

Definition 2 (Collection Exemplar)
Collection C’s exemplar is a subset of C that
can topically represent the documents in C to
some extent.

Any subset of C can be an exemplar of C. Some
exemplars are representative of C. Some exemplars
are not representative.

2 Election Analogy

Choosing an exemplar for a collection is not an easy
task. How could a subset of a collection represent
the whole collection? In what sense is an exemplar
qualified as a representative of the collection?

We found that this situation is similar to choos-
ing a government for a country. Choosing a govern-
ment for a country is also not an easy task and the
elected government is often not satisfactory. Peo-
ple have invented many different kinds of election
systems to choose a government. In order to get
inspiration from the existing election systems, we
introduce the following analogy: choosing an exem-
plar for a collection is like choosing a government
for a country.

A country has many people but only a limited
number of people can run the government. What-
ever election system is used, it is impossible to hear
the voices of all people.

A collection has many documents but only a lim-
ited number of documents can be part of the exem-
plar. Whatever exemplification algorithm is used,
it is impossible to put all documents into the ex-
emplar.

A government cannot reflect all points of view of
the people. But there is a big difference between
a good government and a bad government. It is
very important to discuss how to choose a good

government.
An exemplar cannot reflect all content of the col-

lection. But there is also a big difference between
a good exemplar and a bad exemplar. It is also
very important to discuss how to choose a good
exemplar.

Many aspects of elections need to be discussed,
such as riding division, quota of electees, voting
options, exemplar choosing, and so on. Due to
space limitations, we only discuss two aspects of
elections: voting among documents and choosing
candidates.

3 Voting Among Documents

We assume that each document is represented by
a column vector of word occurrence (Many books
and papers, such as [1] and (2], discusses this rep-
resentation). Using our election analogy, we can
imagine that each document is a person, and the
words in each vector are the policies with which
the person agrees. Suppose in an election person a
is a candidate, person b is a voter, we discuss under
what condition b will vote for a.

Person b agrees with some policies (contains
some words in its vector). For all these policies,
he checks if person a also agrees with them. If per-
son a agrees with one policy that person b agrees,
person b will be happy and put a Y to denote this.
If person a does not agree with one policy that per-
son b agrees, person b will be not happy and put
a N to denote this. After person b has checked all
the policies with which he agrees, he can calculate
b to a's satisfaction rate:

No.of Ys
No.of Ys+ No. of Ns

If b's satisfaction rate to a is greater than a pre-
scribed value, b will vote for a. Otherwise b will
not vote for a.

Now we define b's satisfaction rate to a:

Definition 3 (Satisfaction Rate) Suppose V)
is the vector of document a, Vi is the vector of
document b, Sy(a) is b's satisfaction rate to a.

Su(a) = (Y sign(Va[w]» Va[u])) /(3 sign(Va[w]);

#alis faction rate =

where sign(z) =1 ¢f x>0, sign(z) =0 if z < 0.

4 Choosing Candidates

Choosing candidates is a very important part of a
government election. It is almost impossible for a
person who is not a candidate to be elected. Choos-
ing candidates has two major benefits:

The first benefit of choosing candidates is reduc-
ing election costs. In an election many costs, like
campaign costs, voting costs, statistical costs, are
related to the number of candidates. Without spec-
ifying candidates everyone in the population can
possibly be elected so everyone in the population
is a candidate.

Let us imagine that in a government election 1
million people must elect 100 electees. All of the
1 million people are campaigning, each voter has
to check all the 1 million candidates to choose his
favorite 100 people. How much time and energy
would the campaign, the voting, and the statistics
cost? Is it not wasteful?

In exemplar elections, election costs are also very
crucial. The time complexity of our exemplifica-
tion algorithm (see Section 5) is O(k +n), where k
is the number of candidates and n is the number of
documents in the collection. I k is a constant the
algorithm is linear. If all the documents in the col-
lection are candidates the time complexity would
be O(n?) so the algorithm will be much slower.

The second benefit of choosing candidates is in-
creasing election quality. Let us consider the exam-
ple of 1 million people electing 100 electess men-
tioned. Besides of all the costs, this unreasonable
election will also cause the election result to be un-
satisfactory. Since each voter has to choose 100
people from a long candidate list of 1 million peo-
ple and all of the 1 million people are campaign-
ing, the information about all the candidates is too
great to be properly processed. It is likely that no
common recognition can be reached and the voting
result can be very divisive. In this sense we say the
election quality is not good.

In exemplar elections choosing candidates can
also influence the election quality. If too many can-

didates are involved in a election, voters have too
many choices and some less promising candidates
may be chosen. If too few candidates are supplied,
voter’s choices are limited and some promising doc-
uments may be missing.

The next big question is how can candidates be
determined.

In government elections determining candidates
is a complex procedure involving nominations and
campaigning and so on.

In exemplar elections we are unable to simulate
all these procedures. We have to find promising
documents by some heuristic methods.

Candidates should be those documents that are
likely to be elected. To find these promising docu-
ments we have to make an observation about what
kind of documents are likely to be elected. There
is no general heuristic method that can be used in
all situations.

Here we suggest one heuristic method to find

From Definition 3 we know that the satisfaction
rate is determined by the number of words in one
document covers another document. A reasonable
guess is that the more one document has distinct
words, the more possible it can cover other doc-
uments. This observation leads us to propose the
following heuristic method to choose candidates for
an election:

Suppose V is the vector of document a. We de-
fine the heuristic function H(a) as follows:

H(a) =) _ sign(V[w])

where sign(z) = 1if £ > 0, sign(z) =0if z < 0.

If we want to choose m (m > 1) documents from
collection C as candidates, we can calculate H(a)
for all @ € C, and choose the m documents that
have biggest H(a) values.

5 An Exemplification Algo-
rithm

In this section we first describe the algorithm, then
we explain some steps of the algorithm.

Algorithm 1 (Exmplification Algorithm)
The inputs of this algorithm are a collec-
tion Cl[i], the mazimum number of exemplars
MazEzemplar, and a prescribed value valve. The
output of the algorithm are exemplar documents.
1. [Init] ne + number of documents in C;
If ne < 20 MazCandidate + n¢
else if no < 40 MazCandidate + 20
else ifnc < 100 MazCandidate + ng /2
else i fno < 500 MazCandidate + 50
else i fne < 1000 MazCandidate + nc /10
else MazrCandidate + 100.
2. [Investigate All] For i from 1 to nc do
H(CYi]] + number of distinct words in C[i].
3. [Choose Candidates] Choose Can C C, where
|Can| < MazCandidate, YCl[i]eCan, VC[j]eC
but C[j]~Can, HICll] > HICLl)

4. [Prepare Candidates] For i from 1 to
MazrCandidate do

VectorCan|Canli]] + vector of Canli].
5. [Vote] For i from 1 to ng do 6 to 9.

6. [Prepare A Voter] VectorVoter + vector of
Cli).

7. [One Full Ballot] For j from 1 to
MarCandidate do B to 9.

8. [Calculate Satisfaction Rate]

s — VectorVoter -
VectorCan|[Canlj]]/H[Ci]]-

9. [Determine Ballot] If S > valve
Bli, j] + 1 else Bfi,j] + 0.

10. [Count Ballots) For j from 1 to
MazCandidate

Totallj] + 1%, Bli,)

11. [Prepare Choosing] For i from 1 to n¢ do
projection[i] « 0.

12. [Choose All Exemplars] For i from 1 to
MazEzemplar do 13 to 16.

13. [Choose One Exemplar] maz « 0;
For § from 1 to MarCandidate do 14 to 15.

14. [Modify T'otal By Overlap Factor| overlap +
projection » Bli, j]i<y;
newTotal + Totallj]/(overlap + 1).

15. [Choose Maximum From All newTotal] If
newT'otal > mazr

mazx + newTotal; index + j.

16. [Output The Exemplar] If newTotal > 1
projection + projection + Bli,indez]S,;
Output Canlindex].

Now we explain some steps of the algorithm:

Step 1: the maximum number of candidates
should be calculated from the number of docu-
ments in the collection. If ne is very small, all
people can be candidates. If ngo is very big,
MazCandidate has a limit. Between these two ex-
tremes MazCandidate is proportional to ng and
the proportion varies.

Step 2: H(C[s]) is the heuristic function that can
be used to choose candidates.

Steps 5 to 9 are the voting procedure.

In steps 7 to 9 a ballot of one voter is produced.

Step 8: calculate the satisfaction rate. * is a
vector multiplication.

Steps 11 to 16 are used to choose exemplar based
on the result of the election. Vector projection is
used to calculate the overlap among candidate's
supporters.

Step 14: * is a vector multiplication.

Step 16: + is a vector addition.

6 Experiments and Results

The exemplification algorithm is designed to find
some typical documents in a collection. These cho-
sen documents should be able to represent the col-
lection in some sense.

How can we prove that the chosen documents
are typical? We propose the following experiment
method:

1. Find some basic collections. We need to en-
sure that all documents in a basic collection
have common subjects.

2. Combine some of these collections together to
form a combined collection.

3. Use the exemplification algorithm against the
combined collection to get an exemplar.

4. Determine to which basic collection each doe-
ument in the exemplar belongs. Check if the
exemplar can represent the combined collec-
tion.

Table 1 describes the basic collections we used
in these experiments.

The first column is the collection ID. 8 basic col-
lections are involved in these experiments. The
second column is the number of documents in the
collection. The third column is the subject of the
collection. The fourth column describes the source
of the collection.

Table 2 describes the results of these experi-
ments.

The first column is the sequential number of the
experiment. There are 19 experiments in total.

The second column describes the composition of
the combined collection. For example, in experi-
ment 10 the combined collection was composed of
basic collection 2, 3, and 4 described in Table 1.

The third column is the number of documents
in the combined collection. Among these exper-
iments, the smallest combined collection contains
7 documents, and the largest combined collection
contains 2007 documents.

S—

Subject

Collection ID | Size Source
1 31 Latex Software Documentation
2 4 Flashpoint Software Documentation
3 3 Aladdin Software Documentation
1 20 | University of Waterloo Internet
5 316 | Document Collection Internet
] 251 | University of Waterloo Internet
7 622 Oktoberfest Internet
8 818 Christmas Internet

Table 2: Experiment Results

MExperiment | Composition | No. of Docs | Result | First | Second | All_
1 {12} TS | Y N N
2 {13} 34 1 Y e T
3 {14} e T el B B
4 (23} 7 2233 | Y | Y |Y
5 {2.4) 24 sty vy
6 (3.4) 23 43444| Y | v | Y
7 (1,23} 8 |1 T R O K
8 (12,4} 55 14,4 - PR ST
9 {1.3.4) 54 144 el yoln
10 (2.3.4) 27 42244| Y | Y |N
1 {1,2,34) 58 14,444 | Y Y |N
12 (5.6) s67 |55855| Y | N [N
13 - (56.7) 189 75675 Y | Y [N
14 (5.7) o8 |7ss77| Y | Y |¥
15 {6,7} 873 78767 Y Y X
16 (7,8} 140 87787 Y | Y |Y
17 {5,7.8} 1756 87555 Y Y Y
18 {6.7.8) w01 |serie| Y | Y |Y
19 {5,6,7.8} 007 |86rs5] Y | ¥ | ¥

The fourth column describes the result of this
experiment. For convenience, we give the basic col-
lection IDs corresponding to the documents in the
exemplar instead of the exemplar document names.
For example, in experiment 8 the exemplar con-
tains three documents, the first document of the
exemplar is from basic collection 1, the second and
third documents of the exemplar are from basic
collection 4.

The fifth column answers this question: does
the first document in the exemplar belong to the
biggest basic collection? For example, in exper-
iment 16 the first document in the exemplar be-
longs to basic collection 8 which is bigger than all
the other basic collections in this composition.

The sixth column answers this question: does
the exemplar cover the first two biggest basic col-
lections? For example, in experiment 18 the exem-
plar covers the first two biggest basic collections (8
and 7), so this column is Y.

The last column answers this question: does
the exemplar cover all basic collections in this
combined collection? For example, in experi-
ment 19 the exemplar covers all 4 basic collections
(5,6,7,and 8) in the combined collection, so this
column is Y.

From Table 2 we know that the exemplification
algorithm

l.mﬂnﬂﬁndadommmtmrepmttha
bis malc: codlabbicn:

2. in most cases can find a document to represent
the second biggest basic collection;

3. in about half the cases can find an exemplar
that covers all the basic collections in the com-

position.

These experimental results show that an exem-
plar produced by the exemplification algorithm can
represent the collection to some extent. We are do-
ing further research to improve and evaluate this
algorithm.

References

[1] Willian B. Frakes and Ricardo Baeza-Yates. In-
formation Retrieval, Data Structures and Al-
gorithms. Pretice Hall, Englewood Cliffs, New
Jersey, 1992,

[2] Daniel Boley. Principal direction divisive parti-
tioning. Technical Report TR-97-056, Depart-
ment of Computer Science, University of Min-
nesota, Minneapolis, 1997.

